153 research outputs found

    Collapsing Superstring Conjecture

    Get PDF
    In the Shortest Common Superstring (SCS) problem, one is given a collection of strings, and needs to find a shortest string containing each of them as a substring. SCS admits 2 11/23-approximation in polynomial time (Mucha, SODA\u2713). While this algorithm and its analysis are technically involved, the 30 years old Greedy Conjecture claims that the trivial and efficient Greedy Algorithm gives a 2-approximation for SCS. We develop a graph-theoretic framework for studying approximation algorithms for SCS. The framework is reminiscent of the classical 2-approximation for Traveling Salesman: take two copies of an optimal solution, apply a trivial edge-collapsing procedure, and get an approximate solution. In this framework, we observe two surprising properties of SCS solutions, and we conjecture that they hold for all input instances. The first conjecture, that we call Collapsing Superstring conjecture, claims that there is an elementary way to transform any solution repeated twice into the same graph G. This conjecture would give an elementary 2-approximate algorithm for SCS. The second conjecture claims that not only the resulting graph G is the same for all solutions, but that G can be computed by an elementary greedy procedure called Greedy Hierarchical Algorithm. While the second conjecture clearly implies the first one, perhaps surprisingly we prove their equivalence. We support these equivalent conjectures by giving a proof for the special case where all input strings have length at most 3 (which until recently had been the only case where the Greedy Conjecture was proven). We also tested our conjectures on millions of instances of SCS. We prove that the standard Greedy Conjecture implies Greedy Hierarchical Conjecture, while the latter is sufficient for an efficient greedy 2-approximate approximation of SCS. Except for its (conjectured) good approximation ratio, the Greedy Hierarchical Algorithm provably finds a 3.5-approximation, and finds exact solutions for the special cases where we know polynomial time (not greedy) exact algorithms: (1) when the input strings form a spectrum of a string (2) when all input strings have length at most 2

    Parameterized Complexity of Secluded Connectivity Problems

    Get PDF
    The Secluded Path problem models a situation where a sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure, which is the total weight of vertices in its closed neighborhood. In order to minimize the risk of intercepting the information, we are interested in selecting a secluded path, i.e. a path with a small exposure. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure of the tree is minimized. The problems were introduced by Chechik et al. in [ESA 2013]. Among other results, Chechik et al. have shown that Secluded Path is fixed-parameter tractable (FPT) on unweighted graphs being parameterized by the maximum vertex degree of the graph and that Secluded Steiner Tree is FPT parameterized by the treewidth of the graph. In this work, we obtain the following results about parameterized complexity of secluded connectivity problems. We give FPT-algorithms deciding if a graph G with a given cost function contains a secluded path and a secluded Steiner tree of exposure at most k with the cost at most C. We initiate the study of "above guarantee" parameterizations for secluded problems, where the lower bound is given by the size of a Steiner tree. We investigate Secluded Steiner Tree from kernelization perspective and provide several lower and upper bounds when parameters are the treewidth, the size of a vertex cover, maximum vertex degree and the solution size. Finally, we refine the algorithmic result of Chechik et al. by improving the exponential dependence from the treewidth of the input graph.Comment: Minor corrections are don

    Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

    Get PDF
    We study the following computational problem: for which values of k, the majority of n bits MAJ_n can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJ_k o MAJ_k. We observe that the minimum value of k for which there exists a MAJ_k o MAJ_k circuit that has high correlation with the majority of n bits is equal to Theta(sqrt(n)). We then show that for a randomized MAJ_k o MAJ_k circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n^(2/3+o(1)). We show a worst case lower bound: if a MAJ_k o MAJ_k circuit computes the majority of n bits correctly on all inputs, then k <= n^(13/19+o(1)). This lower bound exceeds the optimal value for randomized circuits and thus is unreachable for pure randomized techniques. For depth 3 circuits we show that a circuit with k= O(n^(2/3)) can compute MAJ_n correctly on all inputs

    On the Limits of Gate Elimination

    Get PDF
    Although a simple counting argument shows the existence of Boolean functions of exponential circuit complexity, proving superlinear circuit lower bounds for explicit functions seems to be out of reach of the current techniques. There has been a (very slow) progress in proving linear lower bounds with the latest record of 3 1/86*n-o(n). All known lower bounds are based on the so-called gate elimination technique. A typical gate elimination argument shows that it is possible to eliminate several gates from an optimal circuit by making one or several substitutions to the input variables and repeats this inductively. In this note we prove that this method cannot achieve linear bounds of cn beyond a certain constant c, where c depends only on the number of substitutions made at a single step of the induction

    Circuit Depth Reductions

    Get PDF
    The best known size lower bounds against unrestricted circuits have remained around 3n3n for several decades. Moreover, the only known technique for proving lower bounds in this model, gate elimination, is inherently limited to proving lower bounds of less than 5n5n. In this work, we propose a non-gate-elimination approach for obtaining circuit lower bounds, via certain depth-three lower bounds. We prove that every (unbounded-depth) circuit of size ss can be expressed as an OR of 2s/3.92^{s/3.9} 1616-CNFs. For DeMorgan formulas, the best known size lower bounds have been stuck at around n3−o(1)n^{3-o(1)} for decades. Under a plausible hypothesis about probabilistic polynomials, we show that n4−εn^{4-\varepsilon}-size DeMorgan formulas have 2n1−Ω(ε)2^{n^{1-\Omega(\varepsilon)}}-size depth-3 circuits which are approximate sums of n1−Ω(ε)n^{1-\Omega(\varepsilon)}-degree polynomials over F2{\mathbb F}_2. While these structural results do not immediately lead to new lower bounds, they do suggest new avenues of attack on these longstanding lower bound problems. Our results complement the classical depth-33 reduction results of Valiant, which show that logarithmic-depth circuits of linear size can be computed by an OR of 2εn2^{\varepsilon n} nδn^{\delta}-CNFs, and slightly stronger results for series-parallel circuits. It is known that no purely graph-theoretic reduction could yield interesting depth-3 circuits from circuits of super-logarithmic depth. We overcome this limitation (for small-size circuits) by taking into account both the graph-theoretic and functional properties of circuits and formulas. We show that improvements of the following pseudorandom constructions imply new circuit lower bounds: dispersers for varieties, correlation with constant degree polynomials, matrix rigidity, and hardness for depth-33 circuits with constant bottom fan-in

    Circuit Size Lower Bounds and #SAT Upper Bounds Through a General Framework

    Get PDF
    Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved by the gate elimination method. The most efficient known algorithms for the #SAT problem on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and Kabanets recently showed that the known case analyses can also be used to prove average case circuit lower bounds, that is, lower bounds on the size of approximations of an explicit function. In this paper, we provide a general framework for proving worst/average case lower bounds for circuits and upper bounds for #SAT that is built on ideas of Chen and Kabanets. A proof in such a framework goes as follows. One starts by fixing three parameters: a class of circuits, a circuit complexity measure, and a set of allowed substitutions. The main ingredient of a proof goes as follows: by going through a number of cases, one shows that for any circuit from the given class, one can find an allowed substitution such that the given measure of the circuit reduces by a sufficient amount. This case analysis immediately implies an upper bound for #SAT. To~obtain worst/average case circuit complexity lower bounds one needs to present an explicit construction of a function that is a disperser/extractor for the class of sources defined by the set of substitutions under consideration. We show that many known proofs (of circuit size lower bounds and upper bounds for #SAT) fall into this framework. Using this framework, we prove the following new bounds: average case lower bounds of 3.24n and 2.59n for circuits over U_2 and B_2, respectively (though the lower bound for the basis B_2 is given for a quadratic disperser whose explicit construction is not currently known), and faster than 2^n #SAT-algorithms for circuits over U_2 and B_2 of size at most 3.24n and 2.99n, respectively. Here by B_2 we mean the set of all bivariate Boolean functions, and by U_2 the set of all bivariate Boolean functions except for parity and its complement
    • …
    corecore